Copied to
clipboard

?

G = C22×D5⋊C8order 320 = 26·5

Direct product of C22 and D5⋊C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D5⋊C8, Dic5.14C24, C5⋊C84C23, C51(C23×C8), D5⋊(C22×C8), D1011(C2×C8), C101(C22×C8), (C22×D5)⋊7C8, C2.1(C23×F5), C10.1(C23×C4), C4.57(C22×F5), C23.64(C2×F5), (C22×C4).28F5, C20.97(C22×C4), (C22×C20).36C4, (C23×D5).17C4, (C4×D5).90C23, D10.43(C22×C4), C22.54(C22×F5), Dic5.43(C22×C4), (C2×Dic5).361C23, (C22×Dic5).281C22, (C2×C10)⋊4(C2×C8), (C2×C4×D5).47C4, (C22×C5⋊C8)⋊11C2, (C2×C5⋊C8)⋊14C22, (C4×D5).96(C2×C4), (C2×C4).172(C2×F5), (D5×C22×C4).36C2, (C2×C20).180(C2×C4), (C2×C4×D5).415C22, (C2×C10).95(C22×C4), (C22×C10).77(C2×C4), (C2×Dic5).197(C2×C4), (C22×D5).131(C2×C4), SmallGroup(320,1587)

Series: Derived Chief Lower central Upper central

C1C5 — C22×D5⋊C8
C1C5C10Dic5C5⋊C8C2×C5⋊C8C22×C5⋊C8 — C22×D5⋊C8
C5 — C22×D5⋊C8

Subgroups: 906 in 338 conjugacy classes, 196 normal (13 characteristic)
C1, C2, C2 [×6], C2 [×8], C4 [×4], C4 [×4], C22 [×7], C22 [×28], C5, C8 [×8], C2×C4 [×6], C2×C4 [×22], C23, C23 [×14], D5 [×8], C10, C10 [×6], C2×C8 [×28], C22×C4, C22×C4 [×13], C24, Dic5, Dic5 [×3], C20 [×4], D10 [×28], C2×C10 [×7], C22×C8 [×14], C23×C4, C5⋊C8 [×8], C4×D5 [×16], C2×Dic5 [×6], C2×C20 [×6], C22×D5 [×14], C22×C10, C23×C8, D5⋊C8 [×16], C2×C5⋊C8 [×12], C2×C4×D5 [×12], C22×Dic5, C22×C20, C23×D5, C2×D5⋊C8 [×12], C22×C5⋊C8 [×2], D5×C22×C4, C22×D5⋊C8

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C8 [×8], C2×C4 [×28], C23 [×15], C2×C8 [×28], C22×C4 [×14], C24, F5, C22×C8 [×14], C23×C4, C2×F5 [×7], C23×C8, D5⋊C8 [×4], C22×F5 [×7], C2×D5⋊C8 [×6], C23×F5, C22×D5⋊C8

Generators and relations
 G = < a,b,c,d,e | a2=b2=c5=d2=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ece-1=c3, ede-1=c2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 89)(2 90)(3 91)(4 92)(5 93)(6 94)(7 95)(8 96)(9 157)(10 158)(11 159)(12 160)(13 153)(14 154)(15 155)(16 156)(17 113)(18 114)(19 115)(20 116)(21 117)(22 118)(23 119)(24 120)(25 57)(26 58)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)(33 127)(34 128)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 130)(42 131)(43 132)(44 133)(45 134)(46 135)(47 136)(48 129)(49 87)(50 88)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(65 101)(66 102)(67 103)(68 104)(69 97)(70 98)(71 99)(72 100)(73 141)(74 142)(75 143)(76 144)(77 137)(78 138)(79 139)(80 140)(105 151)(106 152)(107 145)(108 146)(109 147)(110 148)(111 149)(112 150)
(1 137)(2 138)(3 139)(4 140)(5 141)(6 142)(7 143)(8 144)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)(25 135)(26 136)(27 129)(28 130)(29 131)(30 132)(31 133)(32 134)(33 109)(34 110)(35 111)(36 112)(37 105)(38 106)(39 107)(40 108)(41 60)(42 61)(43 62)(44 63)(45 64)(46 57)(47 58)(48 59)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 65)(56 66)(73 93)(74 94)(75 95)(76 96)(77 89)(78 90)(79 91)(80 92)(81 97)(82 98)(83 99)(84 100)(85 101)(86 102)(87 103)(88 104)(113 155)(114 156)(115 157)(116 158)(117 159)(118 160)(119 153)(120 154)(121 149)(122 150)(123 151)(124 152)(125 145)(126 146)(127 147)(128 148)
(1 44 155 85 33)(2 86 45 34 156)(3 35 87 157 46)(4 158 36 47 88)(5 48 159 81 37)(6 82 41 38 160)(7 39 83 153 42)(8 154 40 43 84)(9 135 91 121 49)(10 122 136 50 92)(11 51 123 93 129)(12 94 52 130 124)(13 131 95 125 53)(14 126 132 54 96)(15 55 127 89 133)(16 90 56 134 128)(17 65 147 77 31)(18 78 66 32 148)(19 25 79 149 67)(20 150 26 68 80)(21 69 151 73 27)(22 74 70 28 152)(23 29 75 145 71)(24 146 30 72 76)(57 139 111 103 115)(58 104 140 116 112)(59 117 97 105 141)(60 106 118 142 98)(61 143 107 99 119)(62 100 144 120 108)(63 113 101 109 137)(64 110 114 138 102)
(1 33)(2 156)(3 46)(4 88)(5 37)(6 160)(7 42)(8 84)(9 121)(10 136)(12 94)(13 125)(14 132)(16 90)(18 78)(19 149)(20 26)(22 74)(23 145)(24 30)(25 79)(27 69)(29 75)(31 65)(34 86)(35 157)(38 82)(39 153)(43 154)(44 85)(47 158)(48 81)(50 92)(51 129)(52 124)(54 96)(55 133)(56 128)(57 139)(58 116)(59 97)(61 143)(62 120)(63 101)(66 148)(68 80)(70 152)(72 76)(73 151)(77 147)(89 127)(91 135)(93 123)(95 131)(98 106)(100 144)(102 110)(104 140)(105 141)(107 119)(109 137)(111 115)(114 138)(118 142)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,157)(10,158)(11,159)(12,160)(13,153)(14,154)(15,155)(16,156)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,127)(34,128)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,129)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(65,101)(66,102)(67,103)(68,104)(69,97)(70,98)(71,99)(72,100)(73,141)(74,142)(75,143)(76,144)(77,137)(78,138)(79,139)(80,140)(105,151)(106,152)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150), (1,137)(2,138)(3,139)(4,140)(5,141)(6,142)(7,143)(8,144)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,135)(26,136)(27,129)(28,130)(29,131)(30,132)(31,133)(32,134)(33,109)(34,110)(35,111)(36,112)(37,105)(38,106)(39,107)(40,108)(41,60)(42,61)(43,62)(44,63)(45,64)(46,57)(47,58)(48,59)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66)(73,93)(74,94)(75,95)(76,96)(77,89)(78,90)(79,91)(80,92)(81,97)(82,98)(83,99)(84,100)(85,101)(86,102)(87,103)(88,104)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154)(121,149)(122,150)(123,151)(124,152)(125,145)(126,146)(127,147)(128,148), (1,44,155,85,33)(2,86,45,34,156)(3,35,87,157,46)(4,158,36,47,88)(5,48,159,81,37)(6,82,41,38,160)(7,39,83,153,42)(8,154,40,43,84)(9,135,91,121,49)(10,122,136,50,92)(11,51,123,93,129)(12,94,52,130,124)(13,131,95,125,53)(14,126,132,54,96)(15,55,127,89,133)(16,90,56,134,128)(17,65,147,77,31)(18,78,66,32,148)(19,25,79,149,67)(20,150,26,68,80)(21,69,151,73,27)(22,74,70,28,152)(23,29,75,145,71)(24,146,30,72,76)(57,139,111,103,115)(58,104,140,116,112)(59,117,97,105,141)(60,106,118,142,98)(61,143,107,99,119)(62,100,144,120,108)(63,113,101,109,137)(64,110,114,138,102), (1,33)(2,156)(3,46)(4,88)(5,37)(6,160)(7,42)(8,84)(9,121)(10,136)(12,94)(13,125)(14,132)(16,90)(18,78)(19,149)(20,26)(22,74)(23,145)(24,30)(25,79)(27,69)(29,75)(31,65)(34,86)(35,157)(38,82)(39,153)(43,154)(44,85)(47,158)(48,81)(50,92)(51,129)(52,124)(54,96)(55,133)(56,128)(57,139)(58,116)(59,97)(61,143)(62,120)(63,101)(66,148)(68,80)(70,152)(72,76)(73,151)(77,147)(89,127)(91,135)(93,123)(95,131)(98,106)(100,144)(102,110)(104,140)(105,141)(107,119)(109,137)(111,115)(114,138)(118,142), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,89)(2,90)(3,91)(4,92)(5,93)(6,94)(7,95)(8,96)(9,157)(10,158)(11,159)(12,160)(13,153)(14,154)(15,155)(16,156)(17,113)(18,114)(19,115)(20,116)(21,117)(22,118)(23,119)(24,120)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64)(33,127)(34,128)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,130)(42,131)(43,132)(44,133)(45,134)(46,135)(47,136)(48,129)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(65,101)(66,102)(67,103)(68,104)(69,97)(70,98)(71,99)(72,100)(73,141)(74,142)(75,143)(76,144)(77,137)(78,138)(79,139)(80,140)(105,151)(106,152)(107,145)(108,146)(109,147)(110,148)(111,149)(112,150), (1,137)(2,138)(3,139)(4,140)(5,141)(6,142)(7,143)(8,144)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,135)(26,136)(27,129)(28,130)(29,131)(30,132)(31,133)(32,134)(33,109)(34,110)(35,111)(36,112)(37,105)(38,106)(39,107)(40,108)(41,60)(42,61)(43,62)(44,63)(45,64)(46,57)(47,58)(48,59)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,65)(56,66)(73,93)(74,94)(75,95)(76,96)(77,89)(78,90)(79,91)(80,92)(81,97)(82,98)(83,99)(84,100)(85,101)(86,102)(87,103)(88,104)(113,155)(114,156)(115,157)(116,158)(117,159)(118,160)(119,153)(120,154)(121,149)(122,150)(123,151)(124,152)(125,145)(126,146)(127,147)(128,148), (1,44,155,85,33)(2,86,45,34,156)(3,35,87,157,46)(4,158,36,47,88)(5,48,159,81,37)(6,82,41,38,160)(7,39,83,153,42)(8,154,40,43,84)(9,135,91,121,49)(10,122,136,50,92)(11,51,123,93,129)(12,94,52,130,124)(13,131,95,125,53)(14,126,132,54,96)(15,55,127,89,133)(16,90,56,134,128)(17,65,147,77,31)(18,78,66,32,148)(19,25,79,149,67)(20,150,26,68,80)(21,69,151,73,27)(22,74,70,28,152)(23,29,75,145,71)(24,146,30,72,76)(57,139,111,103,115)(58,104,140,116,112)(59,117,97,105,141)(60,106,118,142,98)(61,143,107,99,119)(62,100,144,120,108)(63,113,101,109,137)(64,110,114,138,102), (1,33)(2,156)(3,46)(4,88)(5,37)(6,160)(7,42)(8,84)(9,121)(10,136)(12,94)(13,125)(14,132)(16,90)(18,78)(19,149)(20,26)(22,74)(23,145)(24,30)(25,79)(27,69)(29,75)(31,65)(34,86)(35,157)(38,82)(39,153)(43,154)(44,85)(47,158)(48,81)(50,92)(51,129)(52,124)(54,96)(55,133)(56,128)(57,139)(58,116)(59,97)(61,143)(62,120)(63,101)(66,148)(68,80)(70,152)(72,76)(73,151)(77,147)(89,127)(91,135)(93,123)(95,131)(98,106)(100,144)(102,110)(104,140)(105,141)(107,119)(109,137)(111,115)(114,138)(118,142), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,89),(2,90),(3,91),(4,92),(5,93),(6,94),(7,95),(8,96),(9,157),(10,158),(11,159),(12,160),(13,153),(14,154),(15,155),(16,156),(17,113),(18,114),(19,115),(20,116),(21,117),(22,118),(23,119),(24,120),(25,57),(26,58),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64),(33,127),(34,128),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,130),(42,131),(43,132),(44,133),(45,134),(46,135),(47,136),(48,129),(49,87),(50,88),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(65,101),(66,102),(67,103),(68,104),(69,97),(70,98),(71,99),(72,100),(73,141),(74,142),(75,143),(76,144),(77,137),(78,138),(79,139),(80,140),(105,151),(106,152),(107,145),(108,146),(109,147),(110,148),(111,149),(112,150)], [(1,137),(2,138),(3,139),(4,140),(5,141),(6,142),(7,143),(8,144),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18),(25,135),(26,136),(27,129),(28,130),(29,131),(30,132),(31,133),(32,134),(33,109),(34,110),(35,111),(36,112),(37,105),(38,106),(39,107),(40,108),(41,60),(42,61),(43,62),(44,63),(45,64),(46,57),(47,58),(48,59),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,65),(56,66),(73,93),(74,94),(75,95),(76,96),(77,89),(78,90),(79,91),(80,92),(81,97),(82,98),(83,99),(84,100),(85,101),(86,102),(87,103),(88,104),(113,155),(114,156),(115,157),(116,158),(117,159),(118,160),(119,153),(120,154),(121,149),(122,150),(123,151),(124,152),(125,145),(126,146),(127,147),(128,148)], [(1,44,155,85,33),(2,86,45,34,156),(3,35,87,157,46),(4,158,36,47,88),(5,48,159,81,37),(6,82,41,38,160),(7,39,83,153,42),(8,154,40,43,84),(9,135,91,121,49),(10,122,136,50,92),(11,51,123,93,129),(12,94,52,130,124),(13,131,95,125,53),(14,126,132,54,96),(15,55,127,89,133),(16,90,56,134,128),(17,65,147,77,31),(18,78,66,32,148),(19,25,79,149,67),(20,150,26,68,80),(21,69,151,73,27),(22,74,70,28,152),(23,29,75,145,71),(24,146,30,72,76),(57,139,111,103,115),(58,104,140,116,112),(59,117,97,105,141),(60,106,118,142,98),(61,143,107,99,119),(62,100,144,120,108),(63,113,101,109,137),(64,110,114,138,102)], [(1,33),(2,156),(3,46),(4,88),(5,37),(6,160),(7,42),(8,84),(9,121),(10,136),(12,94),(13,125),(14,132),(16,90),(18,78),(19,149),(20,26),(22,74),(23,145),(24,30),(25,79),(27,69),(29,75),(31,65),(34,86),(35,157),(38,82),(39,153),(43,154),(44,85),(47,158),(48,81),(50,92),(51,129),(52,124),(54,96),(55,133),(56,128),(57,139),(58,116),(59,97),(61,143),(62,120),(63,101),(66,148),(68,80),(70,152),(72,76),(73,151),(77,147),(89,127),(91,135),(93,123),(95,131),(98,106),(100,144),(102,110),(104,140),(105,141),(107,119),(109,137),(111,115),(114,138),(118,142)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL6(𝔽41)

100000
0400000
0040000
0004000
0000400
0000040
,
4000000
010000
0040000
0004000
0000400
0000040
,
100000
010000
0000040
0010040
0001040
0000140
,
4000000
0400000
0000140
0001040
0010040
0000040
,
100000
0380000
00239380
00403902
00203940
00038392

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,40,40,40,40],[1,0,0,0,0,0,0,38,0,0,0,0,0,0,2,40,2,0,0,0,39,39,0,38,0,0,38,0,39,39,0,0,0,2,40,2] >;

80 conjugacy classes

class 1 2A···2G2H···2O4A···4H4I···4P 5 8A···8AF10A···10G20A···20H
order12···22···24···44···458···810···1020···20
size11···15···51···15···545···54···44···4

80 irreducible representations

dim111111114444
type+++++++
imageC1C2C2C2C4C4C4C8F5C2×F5C2×F5D5⋊C8
kernelC22×D5⋊C8C2×D5⋊C8C22×C5⋊C8D5×C22×C4C2×C4×D5C22×C20C23×D5C22×D5C22×C4C2×C4C23C22
# reps112211222321618

In GAP, Magma, Sage, TeX

C_2^2\times D_5\rtimes C_8
% in TeX

G:=Group("C2^2xD5:C8");
// GroupNames label

G:=SmallGroup(320,1587);
// by ID

G=gap.SmallGroup(320,1587);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,136,102,6278,818]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^5=d^2=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,e*c*e^-1=c^3,e*d*e^-1=c^2*d>;
// generators/relations

׿
×
𝔽